Most computer compromises aren’t discovered until after an attack—sometimes days or weeks later. Shutting down a computer may halt malware activity, but it could have negative and unforeseen consequences. For example, it could become difficult to retrace information infiltrated by a hacker or botnet. This is particularly important if significant time has transpired between an attack and discovery of malware.

During a forensic investigation, there should be a balance between rushing to remove malware and understanding the scope of the malware infestation in order to find a solution that deters future attacks.

What is Malware?

Malware is software that is designed for illicit and potentially illegal purposes. Malware may be a single software program or a collection of programs used to accomplish tasks such as:

  • Obtaining system control—for command and control of a computer
  • Acquiring unauthorized access to system resources—network intrusion
  • Interrupting business operation
  • Gathering information—reconnaissance
  • Holding digital assets hostage—ransomware

How Does Malware Infection Occur?

The Internet has opened the door to broad distribution of malware. It is possible for malware to originate from sources such as email, instant messaging, or infected file downloads. Malware can also spread through USB devices or connectivity to public WiFi hotspots.

The most complex malware tools may use a combination of distribution methods to infiltrate an organization. For example, an email may contain a hyperlink to a website that causes “dropper” software to download. The dropper software performs reconnaissance of its host computer and transmits results out to another computer on the Internet. The second computer analyzes the reconnaissance results and sends back malware that is customized to the host computer.

What are Common Types of Malware?

Virus. Virus software refers to software that inserts malicious code into a computer and has the capability of spreading to other computers. The ability to propagate is a requirement for malware to be classified as a virus or worm.

Worm. Worms are a type of malware that propagate across networks. A worm finds its way by reading network addresses or email contact lists and then copying itself to identified addresses. Worms may have specific capabilities, such as file encryption or installation of certain software, including remote access software.

Trojan Horse. This type of malware enables unauthorized access to a victim computer. Unauthorized access could result in theft of data or a computer that becomes part of a denial-of-service (DDoS) attack. Unlike viruses or worms, Trojan horse software does not spread to other computers.

Rootkits. Rootkits refers to malware that takes control of a host computer and is designed to evade detection. Rootkits accomplish evasion through tactics, such as hiding in protected directories or running hidden process names on DLL’s (Dynamic Link Libraries) as legitimate files, without the computer or user noticing an abnormality. Rootkits may defend themselves from deletion and may have the ability to re-spawn after deletion. Most notably, rootkits have the potential to operate in stealth mode for extensive periods of time and to communicate to external computers, often transmitting collected data from a victim computer.

Spyware. The purpose of spyware is to collect data from a victim computer. Spyware may exist as malware that is installed on a host computer or embedded within a browser. Spyware may collect data over an extensive time period without the victim ever knowing the extent of the spying activity. Spyware may collect keyboard strokes, take screenshots of user activity, or utilize built-in cameras to record video.

Browser Hijacker. This malware takes control of a user’s browser settings and changes the default home page and search engine. Browser hijacking software may disable search engine removal features and have the ability to re-generate after deletion. There may also be persistent, unwanted toolbars that attach to a browser.

Adware. Adware refers to software that has integrated advertising, particularly freeware software. Adware displays advertisements within the freeware product and transmits collected data back to a controlling party (e.g., an advertising distributor). A software creator may utilize advertisements to earn advertising revenue.

Ransomware. Ransomware is malware that encrypts part or all of a host computer. Encryption locks a victim out of important files or a computer until a ransom demand is paid, possibly in the form of bitcoins. If the ransom is paid, the victim has no guarantee that the ransomware will de-crypt the computer.

Investigating Malware

When a malware infection is suspected, care should be taken to investigate and collect evidence where possible while performing radiation to remove the malware infection. The following guidelines should be considered when malware is suspected. If a forensics team is involved with the investigation, the following points will be addressed by forensics examiners.

  1. Assess the implication of powering down the potentially infected computer. Powering down a computer may stop malware in its tracks and result in the loss of potential evidence. In the case of ransomware, a shutdown could results in permanently unrecoverable data. The first response to possible malware infestation should be an evaluation of the victim computer and gathering of key evidence. If the malware is associated with network intrusion or other nefarious activity, evidence gathering may extend across multiple computers and the respective network that hosts the victim computer.
  2. Collect a sample of Random Access Memory (RAM). RAM is temporary memory that exists while a computing device is powered on. RAM is particularly important since malware has the ability to operate (and hide) in RAM. Capturing an image of the infected computer’s RAM, prior to shut down, enables a forensic examiner to assess the potential activity and functionality of the malware. Artifacts that may reside in RAM include:
    • Network artifacts, such as connections, ARP tables, and open interfaces
    • Processes and programs
    • Encryption keys
    • Evidence of code injections
    • Root kit artifacts
    • DLL and driver information
    • Stored passwords for exfiltration containers
    • Typed commands in the DOS prompt
  3. Identify and preserve log files. Log files record a variety of information about system and application usage, user login events, unusual activity such as a software crash, virus activity, network traffic, etc. In the event of a potential malware infection or network intrusion event, log files should be collected and preserved for further analysis. If logging activity is turned off or log files are set for overwriting, they may be limited in value for an investigation.
  4. Interview users who may have received suspicious emails or observed unusual computer activity. Computer users and IT staff may have important information regarding the origin, timeline and possible activity of the malware. Early in an investigation, interviews should be conducted to assess the potential scope and breadth of an incident. If malware was introduced through user activity, such as a phishing email, the suspect email may still reside in a user’s email. In the case of malware that entered a computer through a software vulnerability (e.g., code injection through an unsecured website), IT staff may have information about unusual events in system logs or data leaving through a firewall at unusual times (e.g., after business hours).
  5. Determine whether to investigate other computers. Malware may spread through computers within the same network segment or a shared file server. Investigation of malware should include scans of potentially connected computers to assess the possibility of further malware infestation. Additionally, if external connections such as Remote Desktop or GoToMyPC exist and are active, then a determination should be made to analyze externally connected computers.

For more information about malware infection and forensic investigation, please contact Kivu.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply